skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brodie, Jean_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Recent studies of ultra-diffuse galaxies (UDGs) have shown their globular cluster (GC) systems to be central in unveiling their remarkable properties and halo masses. Deep Hubble Space Telescope imaging revealed 54 GC candidates around the UDG NGC5846_UDG1 (UDG1), with a remarkable 13 per cent of the stellar light contained in the GC system. We present a kinematic analysis of UDG1’s GC system from observations with the integral field spectrograph Keck Cosmic Web Imager on the Keck II telescope. We measure recessional velocities for 19 GCs, confirming them as members of UDG1, giving a total of 20 confirmed GCs when combined with literature. Approximately, 9 per cent of the stellar light are contained just in the confirmed GCs. We determine the GC system’s velocity dispersion to be $$\sigma _{\rm GC}$$ = 29.8$$^{+6.4}_{-4.9}$$ km s$$^{-1}$$. We find that $$\sigma _{\rm GC}$$ increases with increasing magnitude, consistent with predictions for a GC system that evolved under the influence of dynamical friction. The GC system velocity dispersion is constant out to $${\sim} 1R_{\rm eff}$$. Using $$\sigma _{\rm GC}$$, we calculate $$M_{\rm dyn}$$ = $$2.09^{+1.00}_{-0.64}\times 10^{9}$$ M$$_{\odot }$$ as the dynamical mass enclosed within $$\sim$$2.5 kpc. The dark matter halo mass suggested by the GC number–halo mass relationship agrees with our dynamical mass estimate, implying a halo more massive than suggested by common stellar mass–halo mass relationships. UDG1, being GC-rich with a massive halo, fits the picture of a failed galaxy. 
    more » « less
  2. ABSTRACT Some ultra diffuse galaxies (UDGs) reveal many more globular clusters (GCs) than classical dwarf galaxies of the same stellar mass. These UDGs, with a mass in their GC system ($$M_{\rm GC}$$) approaching 10 per cent of their host galaxy stellar mass ($$M_{\ast }$$), are also inferred to have high halo mass to stellar mass ratios ($$M_{\rm halo}/M_{\ast }$$). They have been dubbed Failed Galaxies. It is unknown what role high GC formation efficiencies and/or low destruction rates play in determining the high $$M_{\rm GC}/M_{\ast }$$ ratios of some UDGs. Here we present a simple model, which is informed by recent JWST observations of lensed galaxies and by a simulation in the literature of GC mass loss and tidal disruption in dwarf galaxies. With this simple model, we aim to constrain the effects of GC efficiency/destruction on the observed GC richness of UDGs and their variation with the integrated stellar populations of UDGs. We assume no ongoing star formation (i.e. quenching at early times) and that the disrupted GCs contribute their stars to those of the host galaxy. We find that UDGs, with high $$M_{\rm GC}/M_{\ast }$$ ratios today, are most likely the result of very high GC formation efficiencies combined with modest rates of GC destruction. The current data loosely follow the model that ranges from the mean stellar population of classical dwarfs to that of metal-poor GCs as $$M_{\rm GC}/M_{\ast }$$ increases. As more data becomes available for UDGs, our simple model can be refined and tested further. 
    more » « less
  3. ABSTRACT This study compiles stellar populations and internal properties of ultra-diffuse galaxies (UDGs) to highlight correlations with their local environment, globular cluster (GC) richness, and star formation histories. Complementing our sample of 88 UDGs, we include 36 low surface brightness dwarf galaxies with UDG-like properties, referred to as NUDGes (nearly UDGs). All galaxies were studied using the same spectral energy distribution fitting methodology to explore what sets UDGs apart from other galaxies. We show that NUDGes are similar to UDGs in all properties except for being, by definition, smaller and having higher surface brightness. We find that UDGs and NUDGes show similar behaviours in their GC populations, with the most metal-poor galaxies hosting consistently more GCs on average. This suggests that GC content may provide an effective way to distinguish extreme galaxies within the low surface brightness regime alongside traditional parameters like size and surface brightness. We confirm previous results using clustering algorithms that UDGs split into two main classes, which might be associated with the formation pathways of a puffy dwarf and a failed galaxy. The clustering applied to the UDGs + NUDGes data set yields an equivalent result. The difference in mass contained in the GC system suggests that galaxies in different environments have not simply evolved from one another but may have formed through distinct processes. 
    more » « less
  4. ABSTRACT High-resolution imaging and strong gravitational lensing of high-redshift galaxies have enabled the detection of compact sources with properties similar to nearby massive star clusters. Often found to be very young, these sources may be globular clusters detected in their earliest stages. In this work, we compare predictions of high-redshift ($$z \sim 1$$–10) star cluster properties from the E-MOSAICS simulation of galaxy and star cluster formation with those of the star cluster candidates in strongly lensed galaxies from JWST and Hubble Space Telescope (HST) imaging. We select galaxies in the simulation that match the luminosities of the majority of lensed galaxies with star cluster candidates observed with JWST. We find that the luminosities, ages, and masses of the brightest star cluster candidates in the high-redshift galaxies are consistent with the E-MOSAICS model. In particular, the brightest cluster ages are in excellent agreement. The results suggest that star clusters in both low- and high-redshift galaxies may form via common mechanisms. However, the brightest clusters in the lensed galaxies tend to be $$\approx 1$$–$$1.5 \, \rm {mag}$$ brighter and $$\approx 0.5$$ dex more massive than the median E-MOSAICS predictions. We discuss the large number of effects that could explain the discrepancy, including simulation and observational limitations, stellar population models, cluster detection biases, and nuclear star clusters. Understanding these limitations would enable stronger tests of globular cluster formation models. 
    more » « less
  5. ABSTRACT We present Hubble Space Telescope ACS/WFC and WFC3/UVIS imaging for a sample of 50 low-surface brightness (LSB) galaxies in the $$\sim 10^{15}$$ M$$_{\odot }$$ Perseus cluster, which were originally identified in ground-based imaging. We measure the structural properties of these galaxies and estimate the total number of globular clusters (GCs) they host. Around half of our sample galaxies meet the strict definition of an ultra-diffuse galaxy (UDG), while the others are UDG-like but are either somewhat more compact or slightly brighter. A small number of galaxies reveal systems with many tens of GCs, rivalling some of the richest GC systems known around UDGs in the Coma cluster. We find the sizes of rich GC systems, in terms of their half-number radii, extending to $$\sim$$1.2 times the half-light radii of their host galaxy on average. The mean colours of the GC systems are the same, within the uncertainties, as those of their host galaxy stars. This suggests that GCs and galaxy field stars may have formed at the same epoch from the same enriched gas. It may also indicate a significant contribution from disrupted GCs to the stellar component of the host galaxy as might be expected in the ‘failed galaxy’ formation scenario for UDGs. 
    more » « less
  6. ABSTRACT In order to facilitate the future study of ultra-diffuse galaxies (UDGs), we compile a catalogue of their spectroscopic properties. Using it, we investigate some of the biases inherent in the current UDG sample that have been targeted for spectroscopy. In comparison to a larger sample of UDGs studied via their spectral energy distributions (SED), current spectroscopic targets are intrinsically brighter, have higher stellar mass, are larger, more globular cluster-rich, older, and have a wider spread in their metallicities. In particular, many spectroscopically studied UDGs have a significant fraction of their stellar mass contained within their globular cluster (GC) system. We also search for correlations between parameters in the catalogue. Of note is a correlation between alpha element abundance and metallicity, as may be expected for a ‘failed galaxy’ scenario. However, the expected correlations of metallicity with age are not found, and it is unclear if this is evidence against a ‘failed galaxy’ scenario or simply due to the low number of statistics and the presence of outliers. Finally, we attempt to segment our catalogue into different classes using a machine learning K-means method. We find that the clustering is very weak and that it is currently not warranted to split the catalogue into multiple, distinct subpopulations. Our catalogue is available online, and we aim to maintain it beyond the publication of this work. 
    more » « less
  7. Abstract We present the first comprehensive census of the satellite population around a Large Magellanic Cloud stellar-mass galaxy, as part of the Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) survey. We have surveyed NGC 2403 (D= 3.0 Mpc) with the Subaru/Hyper Suprime-Cam imager out to a projected radius of 90 kpc (with partial coverage extending out to ∼110 kpc, or ∼80% of the virial radius of NGC 2403), resolving stars in the uppermost ∼2.5 mag of its red giant branch. By looking for stellar overdensities in the red giant branch spatial density map, we identify 149 satellite candidates, of which only the previously discovered MADCASH J074238+65201-dw is a bona fide dwarf, together with the more massive and disrupting satellite DDO 44. We carefully assess the completeness of our search via injection of artificial dwarf galaxies into the images, finding that we are reliably sensitive to candidates down toMV∼ −7.5 mag (and somewhat sensitive to even fainter satellites). A comparison of the satellite luminosity function of NGC 2403 down to this magnitude limit to theoretical expectations shows overall good agreement. This is the first of a full sample of 11 Magellanic Cloud–mass host galaxies we will analyze, creating a statistical sample that will provide the first quantitative constraints on hierarchical models of galaxy formation around low-mass hosts. 
    more » « less